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Statistical Methods for Large Flight Lots and
Ultra-High Reliability Applications
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Abstract—We present statistical techniques for evaluating
random and systematic errors for use in flight performance pre-
dictions for large flight lots and ultra-high reliability applications.

Index Terms—Probability, quality assurance, radiation effects,
reliability estimation, statistics.

I. INTRODUCTION

SAMPLING strategies for radiation testing often represent a
compromise between generality and economy.[1] The most

general strategies (those using binomial statistics) assume little
about parts’ radiation response distributions (RRD). However,
such strategies require large samples to achieve high confidence
of high success probability (e.g., 22 parts with no failures to
have 90% confidence that at least 90% of the parts would pass).
The main reason for these large samples is that the schemes must
work for pathological thick-tailed or multimodal distributions
as well as for well-behaved distributions. (The Frechet distri-
bution in Fig. 1 is such a thick-tailed distribution.) Moreover,
because binomial sampling makes no assumptions about dis-
tribution form even if we know, for example, with 90% confi-
dence that 90% of parts pass at a dose D, we cannot say how
many would pass at any other dose level. This makes it very
difficult to assess the effectiveness of typical strategies for ra-
diation hardness assurance (RHA), such as increasing radiation
design margin (RDM).

More economical strategies begin with the assumption,
based on technical and heuristic grounds, that radiation re-
sponse within a wafer lot should be consistent from part to part
[2] and assume the RRD will approximate a particular form
(usually normal or lognormal). This allows the establishment
of higher success probability and confidence with smaller
test samples. Moreover, for small flight lots ( parts) and
not-too-stringent reliability requirements, slight deviations of
the actual RRD from the assumed form will not seriously affect
RHA conclusions. However, if these conditions are violated,
uncertainties in the RRD tails can dominate risk, and small
samples do a poor job of constraining RRD tails or identifying
pathological behavior therein.
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Fig. 1. (a) While normal, lognormal, Weibull, and Frechet distributions yield
good fits to the data shown, they behave very differently in their tails. (b) This
is clear when looking at the worst performer in flight lots as small as 20 parts.

Implications of distribution pathologies have been treated in
discussions of “maverick” devices [3] and bimodality in the En-
hanced Low Dose Rate Sensitivity (ELDRS) response of the
National Semiconductor LM111 voltage comparator [4], [5].
Reference [3] considers the implications of occasional outliers
seen in large-lot tests of 108–A op amps. Specifically, about 1%
of the parts showed abnormally large changes in offset voltage.
The authors of [3] concluded that such maverick devices would
likely not be detected by small-sample tests, and this could have
significant hardness assurance implications for some applica-
tions. Reference [4] considers the hardness assurance impli-
cations of the bimodal radiation response in National Semi-
conductor LM111 voltage comparators. The authors concluded
that multimodality within a single wafer lot precludes sampling
strategies that assume a particular distribution for any mode,
since the existence of further modes at lower probability cannot
be ruled out. Such parts require binomial (or, in the words of
[4], “distribution-free”) sampling. The authors suggested the bi-
modality in the LM111 resulted from subtle differences in post-
processing that shifted the balance between competing mecha-
nisms. Reference [5] found evidence for such a competition oc-
curring in the nitride passivation of the LM111s. The authors
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concluded that the balance was shifted by differences in the
preirradiation-elevated thermal stress (PETS) to which the parts
were exposed after wafer fabrication. The elucidation of this
mechanism meant that bimodality in the LM111 could be con-
trolled. This reduced the urgency of developing RHA method-
ologies capable of dealing with pathological RRDs. However,
the issue of pathological RRDs has not gone away as we show
below, and, particularly for commercial parts, the remediation
of such response may not be feasible. RHA methods for dealing
with such parts are still needed.

In addition to such pathologies, there is also the issue of
systematic errors that may be introduced when the actual
RRD—though well behaved—varies from the form assumed in
the analysis. As Fig. 1 shows, even well-behaved RRDs—such
as the normal, Weibull, and lognormal—yield systematic errors
for large flight lots under such circumstances. Similar errors
occur for ultra-high-reliability applications, since here, too,
uncertainties in the behavior of RRD tails can dominate risk.
Usually, sample sizes in radiation characterization and radia-
tion lot acceptance testing (RLAT) are too small to constrain
RRD tails. Here, we discuss use of representative archival data
to constrain distribution pathologies and provide sufficient
statistics that bounding behavior for the part can be inferred.
We also investigate the influence of assumed distribution form
by fitting the data to several well-behaved distribution forms
with different symmetries—thereby estimating the distribution
dependence of the analysis.

II. DATA SOURCE

The data used in this study were mined from the BSIS
radiation database and were compiled in the course of normal
lot testing at the Raytheon Component Evaluation Center using
their gammacell 220 Co-60 irradiator. Most parts were procured
to internal BSIS Specification Control Drawing (SCD) similar
to Standard Military Drawings (SMDs). All parts in the test
samples were of flight quality and were burned in prior to and
biased during exposure. Tests were conducted per Mil-Std. 883
Method 1019 at dose rates from 50–300 rads(Si)/s. Parametric
and functional shifts were measured after each dose step.
Because the test conditions and methodologies were consistent
across the entire dataset, we were able to combine data for parts
across many different wafer lots. Individual RLAT samples
ranged from 4–20 parts.

III. METHODOLOGY

For each part, we calculated statistics at each dose step for a
representative parameter for each lot and for the ensemble of all
lots combined. We used the ensemble’s greater statistics to char-
acterize distribution pathologies—or if no pathologies were evi-
dent, we used binomial statistics to bound the proportion of parts
that could exhibit such pathologies. Following the suggestion
of Namenson [6], we varied our analysis method depending on
whether variability from lot to lot greatly exceeded that typically
seen within a wafer lot, or whether inter-lot and intra-lot varia-
tion were roughly commensurate. For the commensurate case,
we used the ensemble to infer flight-lot behavior. When intra-lot
distributions were tight, but lot-to-lot variability was large, we

combined data from the flight-lot RLAT sample and the en-
semble. We used the ensemble to determine required RLAT
sample sizes and likely flight-lot variability and estimated mean
flight-lot performance with lot-specific tests (RLAT).

To gauge the dependence of analysis conclusions on the as-
sumed distribution form, we fit data to three different forms. We
chose the normal, Weibull, and lognormal distributions for their
different symmetries, their familiarity, and the fact that they can
be motivated on physical (Weibull or lognormal) or mathemat-
ical (normal) grounds:

We chose the normal distribution

(1)

because it is symmetric about its mean, it represents limiting the
central behavior of most well-behaved distributions (the central
limit theorem), and the sample-mean behavior for small samples
is known to follow Student’s t distribution. While it is unphys-
ical for some problems because it is defined from to ,
analysis conclusions will not be affected as long as .

We chose the Weibull distribution

(2)

since for shape parameter (corresponding to
), it is skewed left. For , the effects of distribution

breadth will generally dwarf those of negative skew in any case.
While no analog to the Student’s t distribution exists for the
Weibull, we can numerically estimate the distribution’s small
sample behavior as a function of . The Weibull distribution can
be motivated physically when several different failure mecha-
nisms compete in a “race to failure.”

We chose the lognormal distribution

(3)

because it is skewed slightly to the right and is a common
choice in radiation analyses. It can be physically motivated
when damage increases in a manner proportional to damage al-
ready sustained. As with the Weibull, it is necessary to calculate
numerically the small sample behavior of distribution-param-
eter estimators as a function of .

We fit data simultaneously to these three distributions using
maximum likelihood (ML) techniques. The likelihood for a data
set and a probability density function (pdf) is

(4)

where is the variable and is a scalar or vector that represents
the fit parameter(s) for the pdf. The likelihood can be viewed
as the probability of realizing the dataset if the are in-
dependent and follow the distribution . The values of
the parameter(s) that maximize the likelihood are called the
maximum likelihood estimators (MLE) for the distribution form

and give a best fit to the data for that form in a max-
imum likelihood sense. The decrease in the relative likelihood
(specifically, the logarithm of the likelihood ratio relative to the
maximum likelihood) as parameter values move away from the
MLEs tends to be distributed as the distribution with degrees
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Fig. 2. OP484 Ibias versus lot and histogram after 100 krad(Si).

of freedom equal to the number of parameters for the distri-
bution. Thus, it gives a measure of the relative probability for
parameter values other than the MLEs, and one can construct
confidence intervals for in addition to the best-fit MLEs. By
taking the fit parameters that yield worst-case results and fall on
the bounds of these intervals, we can bound degradation at the
given confidence level.

IV. DISTRIBUTION PATHOLOGIES

Although serious pathologies in RRDs are relatively rare, we
found examples of both thick-tailed and bimodal distributions.
These pathologies pose problems for conventional small-sample
RHA methodologies because the RRD does not approach zero
in a predictable way even for very large degradation levels. This
effectively invalidates strategies such as increased margin or de-
rating, since no matter how much margin one incorporates, one
cannot be confident that degradation will not exceed that level.

A. OP484

The Analog Devices OP484 quad op amp exhibits a high
and a low mode of radiation-induced increased bias current,
Ibias, with at least some lots spanning both modes (Fig. 2).
While such bimodality can pose significant difficulties for RHA
methodologies, the Standard Military Drawing (5962R00517)
version of this part allows Ibias to degrade up to 3000 nA after
100 krad(Si)—much higher than the levels seen here. A study of
the saturation trends in the data and of the correlations between
prerad and postrad behavior suggests that, like the LM111, the
bimodality here may derive from competing mechanisms and
that the same mechanism responsible for the introduction of
the high degradation mode may also affect the prerad leakage
current.

B. 2N5019

Gate-to-source leakage current Igss after 0.3 and 1 Mrad(Si)
in 2N5019 junction field-effect transistors (JFETs) varies so
broadly that a log scale is needed to plot it (Fig. 3). Several
methods show the data may be fit by a thick-tailed (Frechet-
type) extreme value or a very broad lognormal distribution (Fig.
4). Predicting on-orbit performance for such a part is difficult,
since a nonzero probability exists even for very high Igss.

Fig. 3. Igss for 2N5019 FET’s spans up to 320� in some lots.

Fig. 4. Igss for 2N5019 FET’s fits either a thick-tailed extreme-value
(Frechet-type) distribution or a very broad lognormal.

C. 2N2658

The radiation-induced gain change in the 2N2658 bipolar
junction transistor (BJT) (Fig. 5) is also thick-tailed, following
either a broad lognormal or Frechet distribution. If individual
lots of the 2N2658 had been considered in isolation, several
parts falling in the tail of the distribution could have been dis-
missed as “outliers.” Instead, the improved statistics of the en-
semble reveal that they are part of distribution pathologies rather
than merely isolated occurrences. As such, it is inherently risky
to try to establish derating guidelines—let alone decide whether
to waive RLAT—based on results for one or a few lots.

For parts that exhibit RRD pathologies, predicting the likely
amount of degradation is inherently difficult. Therefore, the use
of such parts cannot be recommended unless the application is
insensitive to the types of degradation observed.

V. WELL-BEHAVED DATA

A. RH1014 Op amp

To illustrate the use of well-behaved archival data, we use
38 RLAT samples (158 parts total) of the Linear Technologies
RH1014 quad op amp tested at 60, 100, and 200 krad(Si). The
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Fig. 5. Changes in gain of 2N2658 BJTs after 300 krad(Si) span more than
32�. The inset shows the histogram of gain change, along with Lognormal and
Frechet fits to the data.

Fig. 6. Ibias after 200 krad(Si) and best fits to the data.

fact that the 158-part dataset yielded no sign of RRD pathology
establishes at the 90% CL (using binomial statistics) that any
such pathologies comprise less than 1.5% of the parts. Fig. 6
shows Ibias after 200 krad(Si), along with normal, lognormal,
and Weibull fits to the data.

ML fits to the 200-krad data yield confidence intervals (the
shaded ellipses in Fig. 7) as well as best-fit values (black). For
a desired confidence level CL, we select the fit parameters that
yield the worst-case (WC) distribution and fall on or within the
CL contour. This defines the WC distribution consistent with
our data at confidence level CL. For desired success probability
Ps, we define the design-to Ibias for our WC distribution as the
current where we have probability Ps that we will not exceed
that value. As shown in Table I, the required design-to Ibias
increases with both CL and Ps.

Contributions to this increase in design-to Ibias include both
random errors due to sampling and systematic errors arising
from inconsistencies between the data and the form assumed
by the fit. While we are usually interested in bounding degra-
dation, in some cases, it may be desirable to separate the likely
contributions of random and systematic errors. For example, we
may wish to assess whether our model yields unacceptably high
systematic errors or to determine test sample sizes. We first es-
timate the random sampling errors for an RRD of the assumed

form (e.g., normal, Weibull, or lognormal) with our ML fit pa-
rameters. We assume that the residual increase arises from sys-
tematic errors.

For the mean of a normal distribution, the sampling errors
are well defined in terms of the student’s t distribution with a
standard error for sample size of , where is the RRD
standard deviation. Estimating the random errors for the sample
standard deviation , and for the Weibull and lognormal fit pa-
rameters is most easily done numerically. To do this, we gener-
ated 10 000 samples of 100 elements for each of our distribu-
tions. We then estimated the distribution parameters of the gen-
erating distribution using sample sizes of 5, 10, 20, 40, 80, and
all 100 entries. We also fit the error (as measured by the stan-
dard deviation on the estimated fit parameter distribution) to a
power law (Fig. 8).

Calculating the design-to Ibias assuming only random sam-
pling errors and comparing to the results in Table I, we find that
random sampling errors account for about 50%–70% of the in-
crease in Ibias from best fit to 95% WC, assuming a Weibull fit.
Similarly, we find that sampling errors account for about 60%
of the increases assuming either a normal or lognormal fit.

Fitting the data for the 60 and 100 krad(Si) steps and adding
it to the 200 krad(Si) data yields Fig. 9 for 99.9999% success
probability at the 95% CL.

The linearity between dose and increased Ibias makes it pos-
sible to correlate the design-to Ibias with equivalent radiation
design margins (RDM). The 99.9999/95 values are roughly
2.5 the mean values for each dose step. Factoring in the usual
2 margin, this means a 5 RDM ought to establish the same
reliability level. While this procedure carries risk (e.g., due to
process changes), it provides an empirical basis for the RDM,
and is preferable to an across-the-board, ad-hoc requirement.

Like high reliability requirements, large flight lots emphasize
the distribution tails. Failure in a flight lot of parts with no
redundancy is driven by the worst performing part. For failure
pdf (Ibias) and cumulative distribution (Ibias), the pdf for
the worst-case Ibias is

(5)

Table II gives best fit and 95% WC design-to values for flight
lots of 20 and 100 RH1014s.

The analyses carried out above demonstrate both the in-
creased power and increased risk for of assuming a particular
distribution form for the RRD. In contrast, an analysis with
purely binomial statistics assumes all samples come from a
common distribution, but makes no assumptions about the
distribution form. For the RH1014 data considered here, such
an analysis can conclude at the 95% CL only that fewer than
1.9% of the parts will exceed the highest measured Ibais for
each dose level. The limitations of such an analysis become
more apparent when we deal with smaller datasets.

B. OP-07 Op amp

For parts with smaller archival datasets, the procedure is the
same, but the more limited statistics give rise to larger random
errors. Our dataset for the Analog Devices OP-07 ultra-low
offset voltage operational amplifier consists of measurements
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Fig. 7. ML Best fit (black) 90% (dark gray) and 95% (light gray) CL intervals for the normal distribution for data in Fig. 6. Numbers in each cell are the logarithms
of the likelihood ratios relative to the maximum likelihood.

TABLE I
DESIGN-TO-IBIAS AFTER 200 KRAD (Si)—ULTRA-HIGH RELIABILITY

Fig. 8. Distribution widths of sample lognormal standard deviations � ,
decrease with increasing sample size roughly according to power law (inset).

of excess input current (Iin) for 36 parts—traceable to two
lot date codes and nine different wafers—after 100 and 300
krad(Si). The data for 100 krad(Si) are well behaved, indicating
at the 95% CL that any pathology accounts for fewer than 8%
of the parts. The Weibull, normal, and lognormal distributions
all give reasonable fits to the data (Fig. 10).

Table III compares the best-fit and 95% WC fit parameters
for the OP-07 and the RH1014, along with the percent changes
between the best-fit and 95% WC parameters. Even though the
OP-07’s best-fit distribution is slightly narrower than that for the
RH1014, its s in going from best fit to 95% WC are roughly
twice those for the RH1014. Given that we have about 4 as
much data for the RH1014 and that ML errors typically scale as

Fig. 9. Design-to Ibias for 99.9999% P(success)—best fit (open symbols) and
95% CL (solid symbols).

TABLE II
DESIGN-TO-IBIAS AFTER 200 KRAD (Si)—LARGE FLIGHT LOTS

Fig. 10. Increased input leakage current for OP-07 op amps after 100 krad,
and best fits for Weibull, normal, and lognormal forms.

the inverse square of the amount of data, this difference is about
what would be expected. However, the practical consequences
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TABLE III
ML FIT PARAMETERS: FROM BEST FIT TO 95% WC

TABLE IV
BEST-FIT AND 95% WC DESIGN-TO IIN (100 AND 300 KRAD(Si)

of this lower precision are that design to values will be more
conservative.

At 300 krad(Si), the Iin distribution shifts to the right and
broadens so that nA and nA, as long as one
ignores a single “outlier” with nA. The presence
of the outlier among 36 parts indicates that up to 12% (95%
CL) of the parts may be part of an RRD pathology at this dose
level. There is also the question of whether to omit the outlier
from the analysis or consider it as part of the RRD. We calculate
the design-to Iin values, first omitting and then including the
putative outlier (Table IV).

We can draw several conclusions from Table IV.

1) Smaller datasets lead to higher design-to values.
2) The lognormal distribution produces worst-case values

due to its positive skew.
3) Including the outlier leads to much higher design-to

values and produces such a broad distribution that the
Weibull shape s<3.68 is skewed right rather than left, so
the Weibull produces higher values than the normal.

4) If we exclude the outlier, the Weibull gives the best fit,
while including that outlier means that only the lognormal
gives a reasonable fit.

Finally, we consider the relation between design-to values
and radiation design margin such as we employed for the
RH1014. For the RH1014, the linear relationship between
damage and dose facilitated such an analysis. The analysis is
more problematic for the OP-07, since we have only two dose
steps, making it impossible to confirm a linear relationship

between dose and damage. However, the moderate degradation
at the 100-krad(Si) dose step suggests that a substitution of
RDM for lot testing may be possible up to this level—with
3.8 margin equating to 95/99 assurance and 6.8 being
required for 95/99.9999% assurance. Confidence in such a sub-
stitution could be increased if degradation below 100 krad(Si)
was confirmed to be linear in dose. The outlier seen for the
300-krad(Si) dose step makes it unwise to substitute RDM for
RLAT above 100 krad(Si).

VI. LARGE LOT-TO-LOT FLUCTUATIONS

When lot-to-lot variability greatly exceeds intralot variations,
the ensemble exaggerates flight-lot variability. At the same time,
sampling errors due to small RLAT samples preclude mean-
ingful inference. The first step in such cases is to characterize
the variability and use trends in the data (e.g., relations between
distribution mean and width) to infer flight-lot performance. If
no trends emerge, it may be useful to assume that the mean and
width are independent, estimating width with archival data and
inferring flight-lot mean with lot-specific data. There are sev-
eral advantages to this procedure. First, it is physically plau-
sible, since shifts in the mean radiation response often result
from lot-specific process changes, while intra-lot variations may
be due to process tolerances. Second, while the sample mean
for small samples converges rapidly to the parent-distribution
mean, convergence of the variance of the distribution of sample
variances has a more complicated dependence on sample
size n

(6)

where is the fourth central moment and the standard devi-
ation of parent distribution. As n increases, (6) approaches con-
vergence as . For a Normal RRD, sample sizes required to
determine the sample mean within an error of are four parts
for 90% confidence, five parts for 95% confidence, and nine
parts for 99% confidence. Required samples scale as the inverse
square of the allowable error. For other distributions, the sample
size can be estimated numerically, but the same rule applies: pa-
rameters that most affect where the distribution is centered (e.g.,
normal mean, lognormal mean, and Weibull width) will gener-
ally converge rapidly even for small sample sizes, while those
that affect mainly the distribution width and shape (e.g., normal
and lognormal or Weibull shape) will benefit most from the
additional statistics supplied by the ensemble distribution.

Mean shifts in gain hFE for 2N2907 PNP transistors after
300 krad(Si) vary significantly from lot to lot, but are grouped
tightly within a lot (especially for lots 1–4, 9, and 11, for which
all parts are from a single wafer). Fig. 11 plots the inverse of
the shifts for each lot. We fit each lot to a normal distribution
using an ML fit in the usual manner—determining the mean and
standard deviation independently for each lot. We also fit the
data allowing the mean to vary from lot to lot, but assuming
a common value for across all lots. In Table V, we see that
the MLE for (column 2) varied considerably from sample to
sample. If we take the 95% WC estimate, the variation is even
greater. On the other hand, comparing the MLE for the common
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Fig. 11. Gain shifts in 2N2907 PNP transistors are consistent within wafer
lots, but vary significantly across lots. Parts in lots 1–4 and 9 are from a single
wafer.

TABLE V
COMPARISON OF ENSEMBLE AND SINGLE-LOT �

across lots (column 4) and the 95% WC common , we see
there is significantly less variation. As the required confidence
level increases, the reduced random sampling errors due to the
greater statistics of the ensemble provide a clear advantage.

VII. EFFECTS OF REDUNDANCY

Effectively implemented redundancy can significantly in-
crease reliability not just for random failures, but in some cases
even for wear-out type failure mechanisms and TID degrada-
tion. If instead of requiring all parts in the flight lot to pass
some criterion (e.g., ), only parts
must pass ( for redundancy), failure will be driven by the

th worst part, and the failure pdf will be given by

(7)

By ensuring that the failure rate is no longer driven by the
worst parts, added redundancy de-emphasizes the importance
of distribution extremes. As Fig. 12 shows, when the system ap-
proaches 100:50 redundancy, the failure distribution of the re-
dundant system is driven by the median behavior of the single-
part distribution—even if the single-part distribution is bimodal
or thick-tailed. A small test sample is much more likely to elu-
cidate a distribution’s central behavior than that of its tails. If
an application requires large flight lots or high reliability, but
testing large samples is impractical, redundancy may be the best
way to increase confidence in mission success—and to simplify
qualification.

Fig. 12. For a hundred-part flight lot with a Weibull single-part failure
distribution (w = 500; s = 5:3), increased redundancy causes the system
failure distribution to approach and then surpass the median behavior of
the single-part failure distribution (median behavior is achieved at 100:50
redundancy).

While redundancy can greatly improve system reliability and
easing qualification, the efficacy of the redundancy depends on
how it is implemented. First, the analysis above uses binomial
statistics, and so it assumes that all of the parts have a common
RRD. This may not be the case if some parts in the system have
different application conditions (e.g., parts with bias-dependent
radiation response). Also, the example illustrated in Fig. 12 as-
sumes true 100:50 redundancy—that is, any 50 parts may fail
without causing system failure. Had the system been imple-
mented instead with 50 2:1 redundant pairs (failure of both parts
in any pair causes a system failure), system reliability would still
have been increased, but the system failure distribution would
not have been centered on the single-part median, making it
more difficult to characterize system reliability with a small
sample test.

VIII. CONCLUSION

Large flight lots and high reliability requirements pose
problems for RHA methods that rely on small sample sizes.
Samplingerrorsarisingfromthesmallsamplesizeandsystematic
errors arising from the assumed form of the RRD can invalidate
RHA analyses. In this work, we have shown that sampling
errors can be bounded by augmenting RLAT results with
archival data to characterize radiation response variability and
reduce random errors. Systematic errors from the assumed
distribution form can be estimated by fitting the data to multiple
forms—as we have done here for the normal, lognormal, and
Weibull distributions. The results for the different distributions
gauge the sensitivity of the analysis to the assumed distribution
form. If there is no reason to favor one distribution over the
others, it is prudent to assume the distribution that yields
worst-case results.

Using archival data to bound distribution pathologies and infer
performance is simplest when inter-lot and intra-lot variability
are comparable. Then, the greater statistics of the ensemble
distributionallowinferenceofflight-lotperformancewithgreater
confidence than would be possible with RLAT data alone.
When lot-to-lot variability dominates, the first step is to look
for trends in the data that are useful for prediction. Otherwise,
we use RLAT data to estimate the mean (or other parameter
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most affecting distribution central behavior) and the ensemble
to estimate the standard deviation (or other parameter most
affecting distribution shape and width).

In looking at the effects of large flight lots, it is important to
use a distribution that considers flight lot size (5) and system
redundancy if present (7).

We have also noted that redundancy not only may increase
system robustness to random failures, but also to degradation and
wear-out-type failure mechanisms. Redundancy can simplify
part qualification by driving system performance toward the
central portion of the radiation response distribution—a region
much more easily characterized by small sample sizes. Early in
a part’s history, when archival data are not available, the only
options for use in high reliability or large-flight-lot applications
may be qualification using very large samples or conservative
design including significant (2n:n or more) redundancy.
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